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Generalized polynomials are defined as products of polynomials raised to
positive real powers. The generalized degree can be defined in a natural way.
Relying on Remez-type inequalities on the size of generalized polynomials, we
estimate the supremum norm of a generalized polynomial by its weighted L j norm.
Based on such Nikolskii-type inequalities we give sharp upper bounds for the
distance of the consecutive zeros of orthogonal polynomials associated with weight
functions from rather wide classes. The estimates contain some old results as special
cases. © 1991 Academic Press, Inc.

1. INTRODUCTION

How large can the modulus of an algebraic polynomial be on [-1, 1]
if it is less than 1 on a subset of [-1, 1] with prescribed measure? This
question was answered by Chebyshev when the subset is an interval, but
his elegant method based on zero counting fails to work when we do not
have this additional information. The proof of the general case (due to
Remez [7]) and an application in the theory of orthogonal polynomials
can be found in [4]; a simpler proof is given in [2]. Remez-type
inequalities for generalized polynomials in the trigonometric and the
pointwise algebraic cascs werc established in [1]. We summarize these
results in Section 3. We will use them to estimate the supremum norm of
a generalized polynomial by its weighted L j norm. Such estimates are
called (special) Nikolskii-type inequalities, which are interesting in them
selves. Improving an old technique from [8, p. 112-115], we will apply our
Nikolskii-type inequalities to obtain sharp upper bounds for the distance of
the adjacent zeros of orthogonal polynomials associated with weight
functions from rather wide classes beyond the Szego class.
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2. GENERALIZED POLYNOMIALS: DEFINITIONS AND NOTATIONS

81

Denote by TI" the set of all real algebraic polynomials of degree at most
n. The set of all real trigonometric polynomials of degree at most n will be
denoted by T". The function

k

j(z)=c fI (z-zXj
j~l

(0 =1= c E C, ZjE C, rj > 0 are real) (1)

will be caned a generalized complex algebraic polynomial of (generalized)
degree

k

N= L:
j=l

To be precise, in this paper we will use the definition

(2)

zr = exp(rlog Izi + ir arg z)

Obviously

(ZEC, rER, -n:::;;argz<n).

k

Ij(z)1 = lei fI Iz-
j~l

Denote by GCAPN the set of all generalized complex algebraic polynomials
of degree at most N. In the trigonometric case let

k

j(z)=c fI (sin«z-zj)j2)P
j=l

(0 =1= c E C, Zj E C, rj > 0 are real).

We say the functionjis a generalized complex trigonometric polynomial of
degree

We have

k

Ij(z)1 = lei fI Isin«z-zj)/2»IYj.
j= 1

Denote by GCTP N the set of all generalized complex trigonometric poly
nomials of degree at most N. To express our information on the measure
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of the subset, where the modulus of a generalized is not greater than 1, we
introduce the notations

GCAPN(s) = {IE GCAPN : m({XE [ -1,1] : If(x)1 ~ 1}):;:': 2 -s}

(0<s<2)

and

GCTPN(s) = {IE GCTPN : m( {tE [ -n, n): If(t)1 ~ 1}):;:,: 2n -s}

(0 < s < 2n).

Throughout this paper C i will denote positive absolute constants. If A is a
subset of the real line, then m(A) will denote its one-dimensional Lebesgue
measure.

3. REMEZ-TYPE INEQUALITIES

Remez-type inequalities play a significant role in this paper. Remez's
theorem [4, pp. 119-121] states that

max Ip(x)1 ~ Q,,(4j(2 -s) -1)
-l~x:E;l

(5)

for every pEGCAP,,(s) n II", where Qll(x)=cos(narccosx) (-1~x~1)
is the Chebyshev polynomial of degree n. The proof of this theorem can be
found in [4, pp. 119-121] and a simpler proof is given in [2]. In trying to
establish a similar inequality for generalized algebraic polynomials it seems
hard to tell what we should put in place of the Chebyshev polynomial
in (5). We can, however, prove an equally useful version of (5) for
generalized algebraic polynomials which preserves the best possible order
of magnitude. This generalization is given by

THEOREM 1. We have

max If(x)1 ~exp(5N~)
-l~x~l

and

max If(x)/ ~exp ( 8N)
-l",;x"';l 2-s

for every f E GCAPN(S).

(0<s~1)

(1<s<2)
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Theorem 1 is proved in [1]. Because of the periodicity we may expect a
significant improvement in the trigonometric case. By establishing the best
possible order of magnitude, this is confirmed by

THEOREM 2. There is an absolute constant c 1 such that

max If(t)1 ~ exp(c1Ns)
-n::o.::;t~n

for every f E GCTPN(S).

(O<s~n/2)

Theorem 2 is proved in [1] as well. Though we will not use it in this
paper, we mention that a sharp pointwise algebraic Remez-type inequality
is also obtained in [1].

It is easy to check that Theorems 1 and 2 imply the following theorems.

THEOREM 1*. There is an absolute constant 0 < C2 < 1 such that

m({YE [-1,1]: If(y)1 ~exp(-N.j;) max If(x)I})~C2S
-l~x~l

for every f E GCAP Nand 0 < s < 2.

THEOREM 2*. There is an absolute constant 0 < c3 < 1 such that

m({tE[-n,n):lf(t)l~exp(-Ns) max If(r)I})~c3S
-n~L::o.::;rr

for every f E GCTPNand 0 < s < 21[.

The advantage of Theorems 1* and 2* is to have an inequality for every
s between the natural bounds (0 < s < 2 in the algebraic case, and
0< s < 2n in the trigonometric case, respectively).

4. NEW RESULTS

If g is a measurable function on the interval [a, b], and for every), > 0
there is a constant K = K(g) depending only on g such that

m({XE [a, b]: Ig(x)1 ~A})~K(gp-P, (6)

then we say g is in weak Lp(a, b), and we will use the notation
gE WLp(a, b). It is well known that if g is in Lp(a, b), then g is in
WLp(a, b). In what follows w will denote a non-negative weight function
from L 1( -1,1).
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4.1. Nikolskii-Type Inequalities

Working with large families of weight functions, we estimate the
supremum norm of generalized complex algebraic polynomials of degree at
most N by their weighted L 1 norm. We will need these inequalities in
Section 6 to give upper bounds for the distance of the consecutive zeros of
orthogonal polynomials. Since for q > 0 the qth power of a generalized
polynomial is also a generalized polynomial, we can easily derive
L oo -+Lq(w) inequalities from our L oo -+L1(w) inequalities. Though we will
not apply them in this paper, for completeness we establish L p ( w) -+ L q ( w)
(0 < q < p < 00) Nikolskii-type inequalities as well. In our theorems we will
use the function log - (x) = min {log x, O}.

THEOREM 3. Let O<a< 1, p=2/a-2, and 10g-(w(x))E WLp ( -1,1).
Then

max If(x)l::>; exp(c(a, K)(l + Nt)r If(x)1 w(x) dx
-l~x~l -1

for every f E GCAPN, where K = K(log - (w)) is defined by (6), and c(a, K)
depends only on IX and K

THEOREM 3*. Let 0 < a < 1, P = 2/a - 2, and log-(w(x)) E WLp ( -1, 1).
Then

(

1 ) lipL
1

If(x)1 p w(x) dx

(

1 )~q
::>;(exp(c(IX,K)(1+qNt))l/q-1/p L

1
If(xW w(X)dx

for every f EGCAPNand 0 < q < p < 00, where K = K(log - (w)) is defined
by (6), and c( IX, K) depends only on IX and K

In our Theorems 4 and 4* we take only half as large p as in Theorems 3
and 3*, but we assume that log-(w(cos e)) is in WLp ( -n, n), and we
obtain the same conclusion.

THEOREM 4. Let O<IX < 1, p= 1/1X-1, andlog-(w(cos e)) E WLp ( -n, n).
Then

max If(x)l::>; exp(c(a, K)(l + N)a)r If(x)1 w(x) dx
-l~x~l -1

for every f E GCAPN' where K = K(log - (w(cos em is defined by (6), and
c( IX, K) is a constant depending only on IX and K
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THEOREM 4* LetO<I/.< 1,p= 1/1/.-1, andlog-(w(cose))E WLp(-n, n).
Then

(

1 )1/PL
1

If(xW w(x) dx

(

1 )vq
:::;; (exp(c(l/., K)(1 + qN)"'»1/q-1/P L

1

If(x)/q w(x) dx

for every fEGCAP N and O<q<p<ct:J, where K=K(1og-(w(cose»)) is
defined by (6), and c(l/., K) is a constant depending only on I/. and K.

We remark that in the case of ~:::;; I/. < 1 (0 < p:::;; 1) the Szeg6 class is
properly contained in the classes of Theorems 4 and 4*. The Nikolskii-type
inequalities of our Theorems 5 and 5* give better upper bounds for less
wide classes.

THEOREM 5. Letw- S EWL1(-1,1)forsomee>O. Then

max If(x)l:::;; c(e, K)(l + N)Mr If(x)1 w(x) dx
-l::S;x~l -1

for every f E GCAPN' where M = 2/8 + 2, K = K(w-') is defined by (6), and
c(e, K) depends only on 8 and K.

THEOREM 5*. Let W-sE WL j (-l, 1) for some 8>0. Then

((1 If(x)j Pw(x) dxYiP

~ (C(8, K)(1 + qN)M)1/q -1/p ((1 If(xW w(x) dX) Jiq

for everYfEGCAP N andO<q<p<oo, where M=2/e+2, K=K(w- S
) is

defined by (6), and C(8, K) depends only on 8 and K.

4.2. Applications: Zeros of Orthogonal Polynomials

Let w be an integrable weight function on [ -1, 1]. Denote the zeros of
the associated orthonormal polynomials Pn(x) by x1,n > x 2•n > ... > xn,n'
Let xv,n = cos ev,n, where 0 < Bv,n < n, Bo,n =0 and Bn + J,n = n. We give
upper bounds for the distance of the consecutive zeros of orthogonal
polynomials associated with weight functions from the classes for which we
established Nikolskii-type inequality. In our first zero estimate the condi
tions are the same as in Theorem 3.



86 TAMAS ERDELYI

THEOREM 6. Let 0 < 0( < 1, p = 2/0( - 2, and log (w(x)) E WLp ( -1, 1).
Then

e v + l,n - ev,n ~ c(O(, K) n"-1 (O~v~n),

where K = K(log - (w)) is defined by (6) and c(0(, K) depends only on 0(, K,
and S~1 w(x) dx.

Our next theorem shows that the same zero estimates can be established
under the conditions of Theorem 4. When log-(w(cos e)) is in L 1( -n, n)
(thus w is in the Szego class), the theorem was proved by Nevai in [6,
pp. 157-158], but only for xv,n instead of ev,n, and even in this special case
Theorem 7 assumes w to be in the wider "weak" Szego class.

THEOREM 7. Let 0<0« 1, p= 1/0(-1, andlog-(w(cos e)) E WLp ( -n, n).
Then for all 0 ~ v~ n we have

(n?:' 1),

where K=K(log-(w(cos e))) is defined by (6) and c(a, K) is a constant
depending only on 0(, K, and S~1 w(x) dx.

The following theorem is due to Erdos and Turan [3] when w- 1 is in
L 1( -1, 1). A generalization, when w-e is in L 1( -1, 1) for some e> 0, was
established by Nevai [6, p. 158], but he works with xv,n instead of ev,no

THEOREM 8. Let w- e E WL 1( -1, 1) for some e > O. Then for all
o~ v ~ n we have

(n?:' 2),

where K = K(w- e
) is defined by (6) and c(e, K) depends only on e, K, and

JI-l w(x) dx.

4.3. The Sharpness of Our Zero Estimates

To see the sharpness of Theorems 6 and 7 we introduce the generalized
Pollaczek weight functions by

(0 ~ f3 < (0).

A result of Lubinsky and Saff announced in [5, p.411, (16)] implies that
for the above weight functions we have

(0 ~ p< (0), (7)
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where e(f3) depends only on 13. If 13 = (2/a - 2) -1 (0 < a < 1), then
iog-(wp(x)) is in WLp(-l, 1) with p=2/a-2, and log-(wp(costl)) is
in WLp(-n,n) with p=l/a-l. Since n- 1/(2 f3 +1)=n"-1, (7) shows the
sharpness of Theorems 6 and 7.

5. PROOF OF THEOREMS 3, 5, AND 5

To prove Theorems 3, 4, and 5 we use our Remez-type inequalities dis
cussed in Section 3. Our idea is to integrate only on a "sufficiently large"
subset, where both the generalized polynomial (compared with its
supremum norm) and the weight function are "sufficiently large," and to
balance in an optimal way.

Proof of Theorem 3. For an f E GCAPN we introduce

D=Df,N,,,={YE[-l,lJ:lf(Y)I~exp(-(l+Nn max If(x)l}
-l~x~l

By Theorem 1* we obtain

(8)

Let

F= Fw,N,c,,, = {y E [ -1, IJ : w(y) ~ exp( -(e + eN)")},

where e>O will be chosen later. Since 10g-(w(x))EWLp(-1,1) and
p=2/a-2, we have

m(F) ~ K(e+ eN)-ap= Ke2a - 2(1 + Nfa-2 ~ e2 (1 + N)2a-2
2

with e= (c2/(2K))1/(2a-2 J (9)

Now we define the set

If(y)1 ~exp( -(1 +N)") -~a;~l If(X)I;j

w( y) ~ exp((c + eN)")

From (8) and (9) we deduce

(10)
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f
1
Iflw~LIflw

~e22(1+N)2"-2exP(-(e"+1)(1+N)")_~:x"'llf(x)l,

which gives the desired result. I

Proof of Theorem 4. For an f E GCAPN we define

D=Df,N."

= {8E [-n, n): If(cos 8)1 ~exp( -(1 +N)") max If(cos t)l}.
-rr:S;t~1t

Observe that fEGCAP N implies g(t)=f(cos t)EGCTPN (this follows
easily from the observation that the range of the function cos z is the whole
complex plane), hence Theorem 2* yields

(11 )

Let

F= Fw.N,c,,, = {8 E [ -n, n] : w(cos 8) ~ exp( - (e + eN)")},

where e>O will be chosen suitably later. Since log-(w(cos8» is III

WL 1( -n, n) and p = 1/0( -1, we have

m(F) ~ K(e + eN)-"P = Ke"-l(1 + N)"-l ~ e3 (1 + N)"-l
2

with e=(e3/(2K))1/("-1). (12)

We introduce

6 = ~~ (1 + N)" - t, (13 )

Kb = {8E [-n, n), n-8~6, n+8~6, 181 ~6} (14)

and

f(cos 8) ~ exp( - (1 + N)") _~~x"'7I: If(X)I;}.

w(cos 8) ~ exp«e + eN)")

(15)
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From (11)-(15) we deduce

c 4c 3 C3m(Go) ~ ; (1 + Nt ~ 1 -1"6 (1 + N)'" ~ 1 ~ "4 (1 + N)'" - I. (16)

With the notation

Go = {x : x = cos B, BEGa},

we obtain from (16) that

L If(x)1 w(x)(1_X2)-1/2 dx
Go

=~ f If(cos B)[ w(cos B) d8
2 Go

Since (1-X2)-1/2~C4(1 +N)l-'" on Go, (17) gives the desired result. Thus
Theorem 4 is proved. I

Proof of Theorem 5. For an f E GCAP N let

D=Df,N= {YE [-1,1]: [f(y)1 ~e-I max If(x)[}.
-l~x~l

By Theorem 1 we have

Let

F= Fw,N,o,c = {x E [ -1, 1] : w(x) ~ (c(1 + N))-2/e},

where c > 0 will be chosen later. Since w ~o is in WL 1( -1, 1), we have

We introduce the set

G= {YE [-1,1]: If(y)[ ~e-l max [f(x)[; w(y)~(c(1 +N))-2/e}.
-l~x:E;;l

From (18) and (19) we deduce

c
m(G)~ 22 (1+N)-2 (20)
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fl Iflw~f Iflw~c2(I+N)-2e-l(c(I+N))-2/e max If(x)l,
-1 G 2 -1~x~1

which gives the desired result. I

Proof of Theorems 3*, 4*, and 5*. We show how Theorem 3* follows
from Theorem 3; the proof of Theorem 4* and 5* is identical. Observe that
f E GCAPNand q > 0 imply fq E GCAPqN' hence by Theorem 3 we obtain

_~a;~llf(xW~exp(c(rx,K)(I+qN)"')(I If(xWw(x)dx

for every f E GCAPN' Therefore

r If(xW w(x) dx
-I

~ max If(x)1 p-qr I f(xW w(x) dx
-l~x~l -1

(

I )(P-q)/q
~ exp(c(rx, K)(1 + qN)a) f-I If(xW w(x) dx

xr If(xW w(x) dx,
-I

and taking the pth root of both sides, we obtain Theorem 3*
immediately. I

6. PROOF OF THEOREMS 6, 7, AND 8

We verify the zero estimates of Section 4.2 by improving a method of
B. Lengyel [8, pp. 112-115]. Our improvement is based on the results of
Section 4.1. Though we proved our Nikolskii-type inequalities for
generalized polynomials, in this section we need them to apply only
for ordinary polynomials. Let 0~ v~ n be a fixed integer and
y = (Ov+ I,n + 0v,n)/2. We define p(x) = p(cos 0) by

2 ( ) = (Sin(N(Y + 0)/2) )2m (Sin(N(Y- 0)/2) )2m
p X N sin((y + 0)/2) + N sin((y - 0)/2) ,

where Nand m are certain positive integers. Then p is an algebraic polyno
mial of degree m(N -1); see [8,6.11.3]. By [8, 6.11.7J we have

(k= 1, 2, ..., n),
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so by the Gaussian quadrature formula

I flf p(x)w(x)dx:;:;(Nsin((ev+l,n-ev,n)/4))~2m w(x)dx
~I ~I

for meN -1):;:; 2n -1. Further p(y) ~!, hence

max Ip(x)1 ~!.
-l~x-:::::;l

91

(21)

(22)

In the case of Theorems 6 and 7, Theorems 3 and 4, together with (21) and
(22) give

!:;:; exp(c( iX, K) n~ ~ I)(N sine (ev+ I,n - tJ v,n)/4)) - 2m rW(X) dx,
-I

thus

From here choosing m = [n~] and N = [n I ~ ~], we obtain the desired
result.

In the case of Theorem 8, Theorem 3 together with (16) and (17) gives

!:;:; c(a, K) exp(M log n)(N sin((tJ v + I,n - tJ v,n)/4)) ~2mr w(x) dx;
~I

therefore

From here the choices m = [log n] and N = en/log n] give the desired
result. I

We remark that our method of proving Theorems 6, 7, and 8 can be
used to give upper bounds for the distance of the consecutive zeros
associated with weight functions from even wider classes.
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